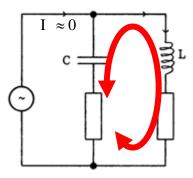

RLC Parallel Resonance

- Assume the applied voltage has the form $V = V_0 \sin \omega t$.
- Assume R₁ and R₂ are low resistances, as compared with the capacitive reactance $(X_C = \frac{1}{\omega C})$ and the inductive reactance $(X_L = \omega L)$.
- The two branches, $(C+R_1)$ and $(L+R_2)$, are joined in parallel, so the voltages across them must be the same at any time.
- As $V_C \approx V_L \approx V$ (effect of the two resistors is neglected), so the two currents, I_C and I_L are respectively

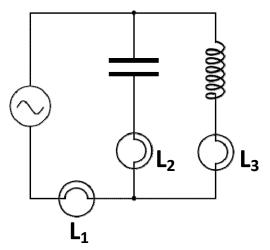
$$I_{\rm C} \approx \frac{V_{\rm o}}{X_{\rm C}} \sin(\omega t + \frac{\pi}{2}) \qquad (\text{In C, I leads V by } \pi/2)$$
$$I_{\rm L} \approx \frac{V_{\rm o}}{X_{\rm L}} \sin(\omega t - \frac{\pi}{2}) \qquad (\text{In L, V leads I by } \pi/2)$$

Hence, I_C and I_L are nearly π out of phase.


- The current from the source $I = I_C + I_L$.
 - (i) At low frequencies, $X_C >> X_L$, so the peak currents $I_o \approx I_{Lo} >> I_{Co}$
 - (ii) At high frequencies, $X_C \ll X_L$, so the peak currents $I_o \approx I_{Co} \gg I_{Lo}$

• Parallel resonance occurs when $X_L = X_C$ or frequency

$$f_{\rm o} = \frac{1}{2\pi\sqrt{\rm LC}} \,.$$


(i) Since $X_L = X_C$, the magnitudes of the currents passing through L and C are the same. Besides, they are nearly π out of phase. In other words, when parallel resonance occurs,

A large current circulate to and fro within the L-C loop.

(ii) The overall supply current $I = I_L + I_C \approx 0$.

A demonstration of Parallel Resonance

To turn on a light bulb, the current passing through it must be considerably large.

	f << f _o	f = f _o	f >> f _o	(where $f_o = \frac{1}{2\pi\sqrt{LC}}$)
L ₁				$2\pi\sqrt{LC}$
L ₂				
L ₃				

- 1. Go to <u>http://ngsir.netfirms.com/englishhtm/Parallel_Resonance.htm</u> and play the applet. See how the brightness of each light bulb changes with the frequency.
- 2. Complete the above table and make a brief explanation.