A Non-Calculus Derivation of the Maximum Range Let the launching velocity be $\vec{\mathbf{u}}$, the launching direction measured from the horizontal be $\boldsymbol{\theta}$, the landing velocity be $\vec{\mathbf{v}}$ and the time of flight be \mathbf{t} . In midair, object is acted on by gravity only, so $$\vec{v} = \vec{u} + \vec{g}t$$, which can be represented by the following vector diagram ## Area of Δ ABC $$= \frac{1}{2}(AC)(BD)$$ $$= \frac{1}{2}(u\cos\theta)(gt) \qquad ... (1)$$ The term $ucos\theta$ in eq. (1) is the horizontal component of \vec{u} , denoted as u_x Therefore, eq (1) can be rewritten as Area of $$\triangle ABC = \frac{1}{2}g(ucos\theta)(t) = \frac{1}{2}g(u_xt) = \frac{1}{2}gR$$, where R = u_xt is the range. In other words, Range = $$\frac{2 \times \text{area of } \triangle \text{ ABC}}{g}$$ - Hence, R is maximum when \triangle ABC has the largest area. - At a fixed magnitude of the launching speed (u), the magnitude of the landing speed (v) is also fixed (by the principle of conservation of energy). - In Fig. 1, the lengths of sides AB and BC are fixed. The area of \triangle ABC is the largest only when \angle ABC is a right angle. Maximum range is achieved when the landing velocity is perpendicular to the launching velocity • If $$\angle ABC = 90^{\circ}$$, $\angle ACB = \theta$, $\tan \theta = \frac{u}{v}$ According to energy conservation, $$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 + mgh$$ $$v = \sqrt{u^2 + 2gh}$$ Max Range Under the conditions for maximum range, fig (1) becomes Fig. 2 tells the whole story. Obviously, 1. The range is maximum when the launching angle is $\theta = \tan^{-1}(\frac{u}{v})$, ... $$\theta_{\text{max range}} = \tan^{-1}(\frac{u}{\sqrt{u^2 + 2gh}})$$ 2. The maximum range is $\frac{2 \times \text{area of} \triangle ABC}{g} = \frac{uv}{g}$ $$R_{\text{max}} = \frac{1}{g}uv = \frac{1}{g}u\sqrt{u^2 + 2gh}$$ 3. The time of flight then is $t = \frac{\sqrt{u^2 + v^2}}{g}$ $$t = \frac{\sqrt{2(u^2 + gh)}}{g}$$ θ max range/ degree - $\theta_{\text{max range}}$ is less than 45° unless h = 0. - For large launching speed ($u^2 >> 2gh$), $\theta_{max \, range} \lesssim 45^0$ - For small launching speed ($u^2 << 2gh$), $\theta_{max range} << 45^0$ For example, h = 1.2 m, u = 4ms⁻¹, $$\theta_{\text{max range}} = 32^{0}$$ • Since $R_{\text{max}} = \frac{1}{g}u\sqrt{u^2 + 2gh}$. The higher the firing platform (h) is, the larger is the max range. For example, \rightarrow u = 4 ms⁻¹ $$h = 0$$, $\theta_{\text{max range}} = 45^{\circ}$, $R_{\text{max}} = 1.6 \text{m}$ \sim u = 4 ms⁻¹ h = 1.2m, $$\theta_{\text{max range}} = 32^{\circ}$$, $R_{\text{max}} = 2.5$ m \rightarrow u = 4 ms⁻¹ $$h = 1.6m$$, $\theta_{\text{max range}} = 30^{\circ}$, $R_{\text{max}} = 2.8m$ ## Two Required Qualities of Shot Put Athletes - 1. Muscular (can give a large u) - 2. Tall (large h) ## Reference: W.M.Young, Am. J. Phys. 53, 1(1985)