A Non-Calculus Derivation of the Maximum Range

Let the launching velocity be $\vec{\mathbf{u}}$, the launching direction measured from the horizontal be $\boldsymbol{\theta}$, the landing velocity be $\vec{\mathbf{v}}$ and the time of flight be \mathbf{t} .

In midair, object is acted on by gravity only, so

$$\vec{v} = \vec{u} + \vec{g}t$$
,

which can be represented by the following vector diagram

Area of Δ ABC

$$= \frac{1}{2}(AC)(BD)$$

$$= \frac{1}{2}(u\cos\theta)(gt) \qquad ... (1)$$

The term $ucos\theta$ in eq. (1) is the horizontal component of \vec{u} , denoted as u_x

Therefore, eq (1) can be rewritten as

Area of
$$\triangle ABC = \frac{1}{2}g(ucos\theta)(t) = \frac{1}{2}g(u_xt) = \frac{1}{2}gR$$
, where R = u_xt is the range.

In other words,

Range =
$$\frac{2 \times \text{area of } \triangle \text{ ABC}}{g}$$

- Hence, R is maximum when \triangle ABC has the largest area.
- At a fixed magnitude of the launching speed (u), the magnitude of the landing speed (v) is also fixed (by the principle of conservation of energy).
- In Fig. 1, the lengths of sides AB and BC are fixed. The area of \triangle ABC is the largest only when \angle ABC is a right angle.

Maximum range is achieved when the landing velocity is perpendicular to the launching velocity

• If
$$\angle ABC = 90^{\circ}$$
, $\angle ACB = \theta$, $\tan \theta = \frac{u}{v}$

According to energy conservation,

$$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 + mgh$$

$$v = \sqrt{u^2 + 2gh}$$

Max Range

Under the conditions for maximum range, fig (1) becomes

Fig. 2 tells the whole story. Obviously,

1. The range is maximum when the launching angle is $\theta = \tan^{-1}(\frac{u}{v})$, ...

$$\theta_{\text{max range}} = \tan^{-1}(\frac{u}{\sqrt{u^2 + 2gh}})$$

2. The maximum range is $\frac{2 \times \text{area of} \triangle ABC}{g} = \frac{uv}{g}$

$$R_{\text{max}} = \frac{1}{g}uv = \frac{1}{g}u\sqrt{u^2 + 2gh}$$

3. The time of flight then is $t = \frac{\sqrt{u^2 + v^2}}{g}$

$$t = \frac{\sqrt{2(u^2 + gh)}}{g}$$

 θ max range/ degree

- $\theta_{\text{max range}}$ is less than 45° unless h = 0.
- For large launching speed ($u^2 >> 2gh$), $\theta_{max \, range} \lesssim 45^0$
- For small launching speed ($u^2 << 2gh$), $\theta_{max range} << 45^0$

For example, h = 1.2 m, u = 4ms⁻¹,
$$\theta_{\text{max range}} = 32^{0}$$

• Since $R_{\text{max}} = \frac{1}{g}u\sqrt{u^2 + 2gh}$.

The higher the firing platform (h) is, the larger is the max range.

For example,

 \rightarrow u = 4 ms⁻¹

$$h = 0$$
, $\theta_{\text{max range}} = 45^{\circ}$, $R_{\text{max}} = 1.6 \text{m}$

 \sim u = 4 ms⁻¹

h = 1.2m,
$$\theta_{\text{max range}} = 32^{\circ}$$
, $R_{\text{max}} = 2.5$ m

 \rightarrow u = 4 ms⁻¹

$$h = 1.6m$$
, $\theta_{\text{max range}} = 30^{\circ}$, $R_{\text{max}} = 2.8m$

Two Required Qualities of Shot Put Athletes

- 1. Muscular (can give a large u)
 - 2. Tall (large h)

Reference:

W.M.Young, Am. J. Phys. 53, 1(1985)